二次元cp博主-bunge-web.com

google seo -> telegram: @ehseo6

">Newsnet 2022-10-02 08:06
  • home  >   /萍乡肥透刚新能源有限公司  >   二次元cp博主
  • 二次元穿梭小说 部队番号代号的区别
    2018番号大全 泽井芽衣 番号 2016
    哪个番号好看 how about 二次元cp博主?
    What's the 二次元cp博主 phone number? What is 二次元cp博主 contact information ?
    Online consultation 二次元cp博主 The picture of the 二次元cp博主
    二次元cp博主of the video Is 二次元cp博主 for real ?
    二次元cp博主's website A map of 二次元cp博主
    二次元cp博主 of tiktok 二次元cp博主music
    二次元cp博主 of news 二次元cp博主app
    二次元cp博主company Customer service of 二次元cp博主 company

    皇冠体育客服『0886.tv』b3c1v2I-  P  铮?F

    皇冠体育客服『0886.tv』b3c1v2I- 铮? U  I

    ?
    Java知识分享网 - 轻松学习从此开始!????

    皇冠体育客服『0886.tv』b3c1v2I-   L 铮? T

    Java1234官方群25:
    Java1234官方群25:838462530
            

    最新Java全栈就业实战课程(免费)

    springcloud分布式电商秒杀实战课程

    IDEA永久激活

    66套java实战课程无套路领取

    Java1234 VIP课程

    Java毕业设计指导(联系锋哥)

    Java毕业设计指导(联系锋哥)         Java1234至尊VIP(特价活动)
    当前位置: 主页 > Java文档 > Java基础相关 >

    深度学习之人脸图像处理 核心算法与案例实战 PDF 下载


    分享到:
    时间:2022-10-02 11:04来源:http://www-java1234-com.bunge-web.com 作者:转载  侵权举报
    《深度学习之人脸图像处理》由浅入深、全面系统地介绍人脸图像的各个研究方向和应用场景,包括但不限于基于深度学习的各个方向的核心技术。《深度学习之人脸图像处理》理论体
    失效链接处理
    深度学习之人脸图像处理  核心算法与案例实战  PDF 下载


    下载地址:
    版权归出版社和原作者所有,链接已删除,请购买正版

    用户下载说明:

    电子版仅供预览,下载后24小时内务必删除,支持正版,喜欢的请购买正版书籍:
    http://product.dangdang.com.bunge-web.com/28991374.html
     

    相关截图:



    资料简介:
    《深度学习之人脸图像处理》由浅入深、全面系统地介绍人脸图像的各个研究方向和应用场景,包括但不限于基于深度学习的各个方向的核心技术。《深度学习之人脸图像处理》理论体系完备,讲解时提供大量实例,可供读者实战演练。本书涵盖的内容非常广泛,从基本的人脸数据集发展历史和人脸检测开始,分别讲述在此基础上进行的人脸图像处理的相关技术与应用,涉及身份识别、安全认证、人机交互和娱乐社交等领域。
     
    《深度学习之人脸图像处理》共11章,涵盖的主要内容有人脸图像与特征基础、深度学习基础、人脸数据集、人脸检测、人脸关键点检测、人脸识别、人脸属性识别、人脸属性分割、人脸美颜与美妆、人脸三维重建及人脸属性编辑。
     
    《深度学习之人脸图像处理》适合计算机视觉领域的初学者及所有在人脸图像算法领域想要有所提高的工程技术人员、学生及教职工阅读。读者既可以将本书作为核心算法书籍学习理论知识,也可以将本书作为工程参考手册查阅相关技术。

    资料目录:
    第1章  人脸图像与特征基础 1
    1.1  人脸图像基础 1
    1.1.1  人脸图像的特点 1
    1.1.2  人脸图像的应用 2
    1.2  人脸特征基础 2
    1.2.1  几何特征 3
    1.2.2  颜(肤)色特征 3
    1.2.3  纹理特征 5
    1.3  人脸图像工程常用的机器学习算法 8
    1.3.1  SVM简介 8
    1.3.2  AdaBoost简介 12
    第2章  深度学习基础 15
    2.1  神经网络 15
    2.1.1  神经元模型 15
    2.1.2  感知机 16
    2.1.3  BP算法 17
    2.2  卷积神经网络基础 20
    2.2.1  卷积操作 20
    2.2.2  反卷积操作 21
    2.2.3  卷积神经网络的基本概念 22
    2.2.4  卷积神经网络的核心思想 24
    2.2.5  卷积神经网络基本结构配置 25
    2.3  深度学习优化基础 28
    2.3.1  激活模型与常用激活函数 29
    2.3.2  参数初始化方法 35
    2.3.3  归一化方法 37
    2.3.4  池化 42
    2.3.5  化方法 43
    2.3.6  学习率策略 47
    2.3.7  正则化方法 50
    2.4  深度学习主流开源框架介绍 53
    2.4.1  Caffe简介 54
    2.4.2  TensorFlow简介 54
    2.4.3  PyTorch简介 55
    2.4.4  Theano简介 56
    2.4.5  Keras简介 56
    2.4.6  MXNet简介 57
    2.4.7  Chainer简介 57
    参考文献 58
    第3章  人脸数据集 60
    3.1  人脸检测数据集 60
    3.1.1  通用人脸检测数据集 60
    3.1.2  复杂人脸检测数据集 62
    3.2  关键点检测数据集 63
    3.3  人脸识别数据集 65
    3.3.1  人脸识别图像数据集 65
    3.3.2  人脸识别视频数据集 69
    3.3.3  三维人脸识别数据集 69
    3.3.4  人脸识别其他数据集 70
    3.4  人脸属性分析数据集 70
    3.4.1  通用人脸属性分析数据集 70
    3.4.2  人脸表情数据集 71
    3.4.3  人脸年龄与性别数据集 73
    3.4.4  人脸分割数据集 74
    3.4.5  人脸颜值数据集 76
    3.4.6  人脸妆造数据集 76
    3.5  人脸姿态与3D数据集 77
    3.5.1  人脸姿态数据集 77
    3.5.2  人脸三维重建数据集 78
    3.6  人脸活体与伪造数据集 79
    3.6.1  人脸活体数据集 79
    3.6.2  人脸伪造数据集 81
    3.7  人脸风格化数据集 81
    第4章  人脸检测 83
    4.1  目标检测基础 83
    4.1.1  目标检测基本流程 83
    4.1.2  选择检测窗口 84
    4.1.3  提取图像特征 84
    4.1.4  设计分类器 85
    4.2  经典人脸检测算法 86
    4.2.1  人脸检测问题 87
    4.2.2  人脸肤色模型 87
    4.2.3  人脸形状模型与模板匹配 88
    4.2.4  特征分类算法 88
    4.2.5  DPM方法 91
    4.3  深度学习通用目标检测方法 93
    4.3.1  OverFeat方法 94
    4.3.2  Selective search与R-CNN方法 94
    4.3.3  SPPNet与Fast R-CNN方法 96
    4.3.4  Faster R-CNN与R-FCN方法 99
    4.3.5  YOLO方法 101
    4.3.6  SSD方法 104
    4.3.7  基于角点的检测方法 105
    4.3.8  目标检测中的几个关键技术和难点 106
    4.4  深度学习人脸检测核心技术 109
    4.4.1  人脸组件算法 109
    4.4.2  级联检测算法 110
    4.4.3  多尺度人脸检测算法 114
    4.4.4  遮挡人脸检测算法 118
    4.4.5  活体与伪造人脸检测算法 119
    4.5  实战Faster R-CNN人脸检测 120
    4.5.1  项目背景 120
    4.5.2  py-faster-rcnn框架解读 120
    4.5.3  模型定义与分析 134
    4.5.4  模型训练 143
    4.5.5  模型测试 144
    参考文献 146
    第5章  人脸关键点检测 149
    5.1  关键点检测基础 149
    5.1.1  关键点的定义 149
    5.1.2  关键点的点数发展 150
    5.1.3  关键点检测算法评价 153
    5.1.4  人脸姿态 154
    5.2  传统人脸关键点检测方法 154
    5.2.1  ASM、AAM与CLM算法 155
    5.2.2  级联形状回归算法 157
    5.3  深度学习方法 158
    5.3.1  级联框架 158
    5.3.2  多任务联合框架 160
    5.3.3  遮挡与大姿态问题 162
    5.4  实时人脸关键点检测实践 163
    5.4.1  数据集和基准模型 163
    5.4.2  模型训练 164
    5.4.3  模型测试 169
    5.5  小结 171
    参考文献 171
    第6章  人脸识别 173
    6.1  人脸识别基础 173
    6.1.1  人脸识别基本流程 173
    6.1.2  人脸识别评估 173
    6.1.3  传统人脸识别特征 174
    6.2  深度学习人脸识别核心技术 177
    6.2.1  度量学习 177
    6.2.2  多类别分类学习 180
    6.2.3  人脸分类优化目标的发展 182
    6.3  人脸识别算法面临的挑战和未来 186
    6.3.1  遮挡人脸识别 186
    6.3.2  跨姿态人脸识别 187
    6.3.3  跨年龄人脸识别 188
    6.3.4  妆造不变人脸识别 189
    6.3.5  异质源人脸识别 190
    6.3.6  其他问题 190
    6.3.7  小结 191
    6.4  实战人脸识别模型训练 192
    6.4.1  数据准备与接口封装 192
    6.4.2  模型训练 198
    6.4.3  模型测试 204
    6.4.4  小结 208
    参考文献 208
    第7章  人脸属性识别 211
    7.1  人脸性别识别 211
    7.1.1  人脸性别识别方法 211
    7.1.2  人脸性别识别发展与挑战 212
    7.2  人脸颜值与脸型识别 212
    7.2.1  平均脸和脸型分类 212
    7.2.2  人脸颜值与脸型特征 213
    7.2.3  应用和挑战 214
    7.3  人脸年龄识别 214
    7.3.1  人脸年龄估计模型 215
    7.3.2  传统年龄估计方法 216
    7.3.3  深度学习年龄估计方法 216
    7.3.4  小结 218
    7.4  人脸表情识别 218
    7.4.1  概述 218
    7.4.2  传统表情识别算法 219
    7.4.3  深度学习方法 221
    7.4.4  挑战与展望 222
    7.5  人脸属性识别项目实践 223
    7.5.1  表情识别 223
    7.5.2  年龄识别 229
    7.5.3  总结 233
    参考文献 234
    第8章  人脸属性分割 236
    8.1  图像分割的基础与人脸属性分割的应用 236
    8.1.1  图像分割的含义 236
    8.1.2  经典的图像分割方法 236
    8.1.3  人脸属性分割的应用 238
    8.2  深度学习图像分割核心技术 239
    8.2.1  反卷积 239
    8.2.2  图像分割经典模型 241
    8.2.3  感受野控制、上下文信息与多尺度结构 243
    8.2.4  图像分割后处理技术 246
    8.2.5  图像分割中的难题 247
    8.3  轻量级人脸分割项目实践 248
    8.3.1  数据集与基准模型 249
    8.3.2  模型训练与测试 250
    8.3.3  小结 254
    参考文献 255
    第9章  人脸美颜与美妆 257
    9.1  美颜基础和应用场景 257
    9.1.1  五官重塑 257
    9.1.2  磨皮、美白与肤质调整 258
    9.1.3  上妆 258
    9.2  基于滤波与变形的传统美颜算法 259
    9.2.1  基于变形的五官重塑 259
    9.2.2  基于滤波的磨皮算法 261
    9.2.3  基于肤色模型的美白与肤质调整算法 263
    9.2.4  小结 264
    9.3  妆造迁移算法 264
    9.3.1  传统妆造迁移算法 264
    9.3.2  深度学习算法 266
    9.4  妆造迁移算法实战 270
    9.4.1  项目解读 270
    9.4.2  模型训练 282
    9.4.3  模型测试 284
    参考文献 286
    第10章  人脸三维重建 287
    10.1  三维重建基础 287
    10.1.1  常见三维重建技术 287
    10.1.2  人脸三维重建的特点和难点 288
    10.1.3  人脸三维重建基础技术 289
    10.2  传统三维人脸重建技术 290
    10.2.1  多目立体视觉匹配 290
    10.2.2  3DMM 294
    10.2.3  Shape from Shading 297
    10.2.4  Structure from Motion 298
    10.3  深度学习三维人脸重建 298
    10.3.1  基于3DMM的方法 298
    10.3.2  基于端到端的通用模型 300
    10.3.3  三维人脸重建的难点 301
    10.4  深度学习三维人脸重建实践 302
    10.4.1  BFM模型的使用 302
    10.4.2  基于BFM模型的常见三维特征 315
    10.4.3  PRNet三维重建 318
    10.4.4  小结 324
    参考文献 325
    第11章  人脸属性编辑 327
    11.1  人脸属性编辑基础 327
    11.1.1  人脸属性编辑应用 327
    11.1.2  基于模型的人脸编辑 329
    11.2  深度学习人脸属性编辑方法 329
    11.2.1  GAN基础 330
    11.2.2  图像风格化 334
    11.2.3  表情编辑算法 336
    11.2.4  年龄编辑算法 338
    11.2.5  姿态编辑算法 339
    11.2.6  人脸风格化算法 341
    11.2.7  换脸算法 344
    11.2.8  统一的人脸属性编辑框架 345
    11.2.9  小结 347
    11.3  实战人脸动画头像风格化 347
    11.3.1  项目解读 348
    11.3.2  模型训练 358
    11.3.3  模型测试 358
    参考文献 361
     
    ------分隔线----------------------------
    ?
    锋哥公众号


    锋哥微信


    关注公众号
    【Java资料站】
    回复 666
    获取 
    66套java
    从菜鸡到大神
    项目实战课程

    锋哥推荐

    山东11选5在线选号 福彩双色球最好的预测网站 大乐透五百期走势图开奖结果 大乐透最近2000期走势 浩轩双色球预测2017149
    快乐十一选五开奖结果 排列五最近3000期 河北快三3号预测 黑龙江省体彩6十1奖池 重庆时时彩机子图片
    排列五万十位差值尾遗漏走势图 复式大乐透能追加 彩票平台发红包 pc蛋蛋下载国际 2008116期双色球开奖结果
    快三的天罡八卦图 湖南竞彩快三查询 福彩22选5复式官方网站 大乐透走势图近期五百 五分时彩几点到几点开、始